A geometric approach to apriori estimates for optimal transport maps
A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma–Trudinger–Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior estimate for smooth optimal maps. Here we give a new derivation of this estimate which rel...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2024-12, Vol.2024 (817), p.251-266 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma–Trudinger–Wang condition is the Pogorelov second-derivative bound.
This translates to an apriori interior
estimate for smooth optimal maps.
Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren’s observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2024-0071 |