A geometric approach to apriori estimates for optimal transport maps

A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma–Trudinger–Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior estimate for smooth optimal maps. Here we give a new derivation of this estimate which rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2024-12, Vol.2024 (817), p.251-266
Hauptverfasser: Brendle, Simon, Léger, Flavien, McCann, Robert J., Rankin, Cale
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma–Trudinger–Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior estimate for smooth optimal maps. Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren’s observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2024-0071