Ergodic states on type III 1 factors and ergodic actions
Since the early days of Tomita–Takesaki theory, it is known that a von Neumann algebra that admits a state with trivial centralizer M φ M_{\varphi} must be a type III 1 factor, but the converse remained open. We solve this problem and prove that such ergodic states form a dense G δ G_{\delta} set am...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the early days of Tomita–Takesaki theory, it is known that a von Neumann algebra that admits a state with trivial centralizer
M
φ
M_{\varphi}
must be a type III
1
factor, but the converse remained open.
We solve this problem and prove that such ergodic states form a dense
G
δ
G_{\delta}
set among all faithful normal states on any III
1
factor with separable predual.
Through Connes’ Radon–Nikodym cocycle theorem, this problem is related to the existence of ergodic cocycle perturbations for outer group actions, which we consider in the second part of the paper. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2024-0007 |