A quantitative stability result for the sphere packing problem in dimensions 8 and 24

We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is close to satisfying the optimal density, then it is, in a suitable sense, close to the and Leech lattices, respectively. In the periodic setting, we prove t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2024-03, Vol.2024 (808), p.241-270
Hauptverfasser: Böröczky, Károly J., Radchenko, Danylo, Ramos, João P. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is close to satisfying the optimal density, then it is, in a suitable sense, close to the and Leech lattices, respectively. In the periodic setting, we prove that, under the same assumptions, we may take a large “frame” through which our packing locally looks like or . Our methods make explicit use of the magic functions constructed in [M. S. Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2) 185 2017, 3, 991–1015] in dimension 8 and in [H. Cohn, A. Kumar, S. D. Miller, D. Radchenko and M. Viazovska, The sphere packing problem in dimension 24, Ann. of Math. (2) 185 2017, 3, 1017–1033] in dimension 24, together with results of independent interest on the abstract stability of the lattices and
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2024-0002