A quantitative stability result for the sphere packing problem in dimensions 8 and 24
We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is close to satisfying the optimal density, then it is, in a suitable sense, close to the and Leech lattices, respectively. In the periodic setting, we prove t...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2024-03, Vol.2024 (808), p.241-270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is
close to satisfying the optimal density, then it is, in a suitable sense, close to the
and Leech lattices, respectively. In the periodic setting, we prove that, under the same assumptions, we may take a large “frame” through which our packing locally looks like
or
.
Our methods make explicit use of the magic functions constructed in [M. S. Viazovska,
The sphere packing problem in dimension 8,
Ann. of Math. (2) 185 2017, 3, 991–1015] in dimension 8 and in [H. Cohn, A. Kumar, S. D. Miller, D. Radchenko and M. Viazovska,
The sphere packing problem in dimension 24,
Ann. of Math. (2) 185 2017, 3, 1017–1033] in dimension 24, together with results of independent interest on the abstract stability of the lattices
and |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2024-0002 |