Geodesic nets on non-compact Riemannian manifolds
A geodesic flower is a finite collection of geodesic loops based at the same point p that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at p is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We pr...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2023-06, Vol.2023 (799), p.287-303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A geodesic flower is a finite collection of geodesic loops based at the same point p that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at p is equal to the zero vector.
In particular, a geodesic flower is a stationary geodesic net.
We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2023-0028 |