Geodesic nets on non-compact Riemannian manifolds

A geodesic flower is a finite collection of geodesic loops based at the same point p that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at p is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2023-06, Vol.2023 (799), p.287-303
Hauptverfasser: Chambers, Gregory R., Liokumovich, Yevgeny, Nabutovsky, Alexander, Rotman, Regina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A geodesic flower is a finite collection of geodesic loops based at the same point p that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at p is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2023-0028