Strominger connection and pluriclosed metrics
In this paper, we prove a conjecture raised by Angella, Otal, Ugarte and Villacampa recently, which states that if the Strominger connection (also known as Bismut connection) of a compact Hermitian manifold is Kähler-like, in the sense that its curvature tensor obeys all the symmetries of the curvat...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2023-03, Vol.2023 (796), p.245-267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove a conjecture raised by Angella, Otal, Ugarte and Villacampa recently, which states that if the Strominger connection (also known as Bismut connection) of a compact Hermitian manifold is Kähler-like, in the sense that its curvature tensor obeys all the symmetries of the curvature of a Kähler manifold, then the metric must be pluriclosed. What we actually showed is a bit more: for any given Hermitian manifold, the Strominger Kähler-like condition is equivalent to the pluriclosedness of the metric plus the parallelness of the torsion. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2023-0007 |