Strominger connection and pluriclosed metrics

In this paper, we prove a conjecture raised by Angella, Otal, Ugarte and Villacampa recently, which states that if the Strominger connection (also known as Bismut connection) of a compact Hermitian manifold is Kähler-like, in the sense that its curvature tensor obeys all the symmetries of the curvat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2023-03, Vol.2023 (796), p.245-267
Hauptverfasser: Zhao, Quanting, Zheng, Fangyang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove a conjecture raised by Angella, Otal, Ugarte and Villacampa recently, which states that if the Strominger connection (also known as Bismut connection) of a compact Hermitian manifold is Kähler-like, in the sense that its curvature tensor obeys all the symmetries of the curvature of a Kähler manifold, then the metric must be pluriclosed. What we actually showed is a bit more: for any given Hermitian manifold, the Strominger Kähler-like condition is equivalent to the pluriclosedness of the metric plus the parallelness of the torsion.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2023-0007