On superintegral Kleinian sphere packings, bugs, and arithmetic groups
We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallograp...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2023-05, Vol.2023 (798), p.105-142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop the notion of a Kleinian Sphere Packing, a generalization of
“crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura,
Geometry and arithmetic of crystallographic sphere packings,
Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441].
Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such.
We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from
-arithmetic lattices of simplest type.
The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles
for finitely many
.
We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii)
that integral packings only arise from non-uniform lattices. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2023-0004 |