q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors

In this paper, we describe a certain kind of -connections on a projective line, namely -twisted -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these -connections and -systems/Bethe Ansatz equations. Here we associate to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2023-02, Vol.2023 (795), p.271-296
Hauptverfasser: Koroteev, Peter, Zeitlin, Anton M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we describe a certain kind of -connections on a projective line, namely -twisted -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these -connections and -systems/Bethe Ansatz equations. Here we associate to a -twisted -oper a class of meromorphic sections of a -bundle, satisfying certain difference equations, which we refer to as -Wronskians. Among other things, we show that the -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2022-0084