Four-dimensional complete gradient shrinking Ricci solitons

In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2021-09, Vol.2021 (778), p.127-144
Hauptverfasser: Cao, Huai-Dong, Ribeiro Jr, Ernani, Zhou, Detang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton , or , or In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2021-0026