Curvature estimates for stable free boundary minimal hypersurfaces
In this paper, we prove uniform curvature estimates for immersed stable free boundary minimal hypersurfaces satisfying a uniform area bound, which generalize the celebrated Schoen–Simon–Yau interior curvature estimates up to the free boundary. Our curvature estimates imply a smooth compactness theor...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2020-02, Vol.2020 (759), p.245-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove uniform curvature estimates for immersed stable free boundary minimal hypersurfaces satisfying a uniform area bound, which generalize the celebrated Schoen–Simon–Yau interior curvature estimates up to the free boundary. Our curvature estimates imply a smooth compactness theorem which is an essential ingredient in the min-max theory of free boundary minimal hypersurfaces developed by the last two authors. We also prove a monotonicity formula for free boundary minimal submanifolds in Riemannian manifolds for any dimension and codimension. For 3-manifolds with boundary, we prove a stronger curvature estimate for properly embedded stable free boundary minimal surfaces without a-priori area bound. This generalizes Schoen’s interior curvature estimates to the free boundary setting. Our proof uses the theory of minimal laminations developed by Colding and Minicozzi. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2018-0008 |