Contracting elements and random walks

We define a new notion of contracting element of a group and we show that contracting elements coincide with hyperbolic elements in relatively hyperbolic groups, pseudo-Anosovs in mapping class groups, rank one isometries in groups acting properly on proper spaces, elements acting hyperbolically on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2018-09, Vol.2018 (742), p.79-114
1. Verfasser: Sisto, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a new notion of contracting element of a group and we show that contracting elements coincide with hyperbolic elements in relatively hyperbolic groups, pseudo-Anosovs in mapping class groups, rank one isometries in groups acting properly on proper spaces, elements acting hyperbolically on the Bass–Serre tree in graph manifold groups. We also define a related notion of weakly contracting element, and show that those coincide with hyperbolic elements in groups acting acylindrically on hyperbolic spaces and with iwips in , . We show that each weakly contracting element is contained in a hyperbolically embedded elementary subgroup, which allows us to answer a problem in [ ]. We prove that any simple random walk in a non-elementary finitely generated subgroup containing a (weakly) contracting element ends up in a non-(weakly-)contracting element with exponentially decaying probability.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2015-0093