Contracting elements and random walks
We define a new notion of contracting element of a group and we show that contracting elements coincide with hyperbolic elements in relatively hyperbolic groups, pseudo-Anosovs in mapping class groups, rank one isometries in groups acting properly on proper spaces, elements acting hyperbolically on...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2018-09, Vol.2018 (742), p.79-114 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define a new notion
of contracting element of a group and we show that contracting elements coincide with
hyperbolic elements in relatively hyperbolic groups, pseudo-Anosovs in mapping class groups, rank one isometries
in groups acting properly on proper
spaces, elements acting hyperbolically on the Bass–Serre tree in graph
manifold groups. We also define a related notion of weakly contracting element, and show that those coincide with
hyperbolic elements in groups acting acylindrically on hyperbolic spaces and with iwips in
,
. We show that each weakly contracting element is contained in a hyperbolically embedded elementary subgroup, which allows us to answer a problem in [
].
We prove that any simple random walk in a non-elementary finitely generated subgroup containing
a (weakly) contracting element ends up in a non-(weakly-)contracting element with exponentially decaying probability. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2015-0093 |