Exotic crossed products and the Baum–Connes conjecture

We study general properties of exotic crossed-product functors and characterise those which extend to functors on equivariant -algebra categories based on correspondences. We show that every such functor allows the construction of a descent in -theory and we use this to show that all crossed product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2018-07, Vol.2018 (740), p.111-159
Hauptverfasser: Buss, Alcides, Echterhoff, Siegfried, Willett, Rufus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study general properties of exotic crossed-product functors and characterise those which extend to functors on equivariant -algebra categories based on correspondences. We show that every such functor allows the construction of a descent in -theory and we use this to show that all crossed products by correspondence functors of -amenable groups are -equivalent. We also show that for second countable groups the minimal exact Morita compatible crossed-product functor used in the new formulation of the Baum–Connes conjecture by Baum, Guentner and Willett ([‘Expanders, exact crossed products, and the Baum–Connes conjecture’, preprint 2013]) extends to correspondences when restricted to separable -algebras. It therefore allows a descent in -theory for separable systems.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2015-0061