Exotic crossed products and the Baum–Connes conjecture
We study general properties of exotic crossed-product functors and characterise those which extend to functors on equivariant -algebra categories based on correspondences. We show that every such functor allows the construction of a descent in -theory and we use this to show that all crossed product...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2018-07, Vol.2018 (740), p.111-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study general properties of exotic crossed-product functors and characterise those which extend to functors on equivariant
-algebra categories based on correspondences.
We show that every such functor allows the construction of a descent in
-theory and we use
this to show that all crossed products by correspondence functors of
-amenable groups are
-equivalent.
We also show that for second countable groups the minimal exact Morita compatible crossed-product functor
used in the new formulation of the Baum–Connes conjecture by Baum, Guentner and Willett ([‘Expanders, exact crossed products, and the Baum–Connes conjecture’,
preprint 2013])
extends to correspondences when restricted to separable
-algebras.
It therefore allows a descent in
-theory for separable systems. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2015-0061 |