Pluriclosed flow on generalized Kähler manifolds with split tangent bundle

We show that the pluriclosed flow preserves generalized Kähler structures with the extra condition , a condition referred to as “split tangent bundle.” Moreover, we show that in this case the flow reduces to a nonconvex fully nonlinear parabolic flow of a scalar potential function. We prove a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2018-06, Vol.2018 (739), p.241-276
1. Verfasser: Streets, Jeffrey
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the pluriclosed flow preserves generalized Kähler structures with the extra condition , a condition referred to as “split tangent bundle.” Moreover, we show that in this case the flow reduces to a nonconvex fully nonlinear parabolic flow of a scalar potential function. We prove a number of a priori estimates for this equation, including a general estimate in dimension of Evans–Krylov type requiring a new argument due to the nonconvexity of the equation. The main result is a long-time existence theorem for the flow in dimension , covering most cases. We also show that the pluriclosed flow represents the parabolic analogue to an elliptic problem which is a very natural generalization of the Calabi conjecture to the setting of generalized Kähler geometry with split tangent bundle.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2015-0055