Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation
We show that, for any uniformly continuous (UC) complex-valued function on real Euclidean -space ℝ , the heat flow is Lipschitz for all > 0 and converges uniformly to as → 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex -space ℂ and consider the Bergman metri...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-06, Vol.2015 (703), p.225-246 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that,
for
any uniformly continuous (UC) complex-valued function on real Euclidean
-space ℝ
, the heat flow
is Lipschitz for all
> 0 and
converges uniformly to
as
→ 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex
-space ℂ
and consider the Bergman metric β(·, ·) on Ω. For
any β-uniformly continuous function on Ω, we show that there is a Berezin–Harish-Chandra flow of real analytic functions
which is β-Lipschitz for each λ ≥
(
, the genus of Ω) and
converges uniformly to
as λ → ∞. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2015-0016 |