Lefschetz properties for noncompact arithmetic ball quotients
We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients.
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2017-09, Vol.2017 (730), p.163-198 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 730 |
container_start_page | 163 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2017 |
creator | Nair, Arvind N. |
description | We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients. |
doi_str_mv | 10.1515/crelle-2014-0131 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2014_0131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2014_01312017730163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a9444622f9180552c79b13699fdde9172af90b21fd55641fc2b5adcb05d111573</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqWwM-YPGO5sX4IHBqigIFVigdlyHJumSpNgu0Ll15OqrEz3hvue3sfYNcINEtKti77rPBeAigNKPGEzVJI4SUWnbAZQEVcI4pxdpLQBAMJKzNj9yofk1j7_FGMcRh9z61MRhlj0Q--G7WhdLmxs83rrc-uK2nZd8bUbprc-p0t2FmyX_NXfnbOP56f3xQtfvS1fFw8r7pQSmVutlCqFCBrvgEi4StcoS61D03g97bBBQy0wNESlwuBETbZxNVCDiFTJOYNjr4tDStEHM8Z2a-PeIJiDvjnqm4O-OehPyOMR-bZd9rHxn3G3n4LZDLvYT2P_RadQVRKwlPIXzyFk1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lefschetz properties for noncompact arithmetic ball quotients</title><source>De Gruyter journals</source><creator>Nair, Arvind N.</creator><creatorcontrib>Nair, Arvind N.</creatorcontrib><description>We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2014-0131</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2017-09, Vol.2017 (730), p.163-198</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a9444622f9180552c79b13699fdde9172af90b21fd55641fc2b5adcb05d111573</citedby><cites>FETCH-LOGICAL-c442t-a9444622f9180552c79b13699fdde9172af90b21fd55641fc2b5adcb05d111573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0131/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0131/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Nair, Arvind N.</creatorcontrib><title>Lefschetz properties for noncompact arithmetic ball quotients</title><title>Journal für die reine und angewandte Mathematik</title><description>We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqWwM-YPGO5sX4IHBqigIFVigdlyHJumSpNgu0Ll15OqrEz3hvue3sfYNcINEtKti77rPBeAigNKPGEzVJI4SUWnbAZQEVcI4pxdpLQBAMJKzNj9yofk1j7_FGMcRh9z61MRhlj0Q--G7WhdLmxs83rrc-uK2nZd8bUbprc-p0t2FmyX_NXfnbOP56f3xQtfvS1fFw8r7pQSmVutlCqFCBrvgEi4StcoS61D03g97bBBQy0wNESlwuBETbZxNVCDiFTJOYNjr4tDStEHM8Z2a-PeIJiDvjnqm4O-OehPyOMR-bZd9rHxn3G3n4LZDLvYT2P_RadQVRKwlPIXzyFk1g</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Nair, Arvind N.</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Lefschetz properties for noncompact arithmetic ball quotients</title><author>Nair, Arvind N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a9444622f9180552c79b13699fdde9172af90b21fd55641fc2b5adcb05d111573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Arvind N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Arvind N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lefschetz properties for noncompact arithmetic ball quotients</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>2017</volume><issue>730</issue><spage>163</spage><epage>198</epage><pages>163-198</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2014-0131</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2017-09, Vol.2017 (730), p.163-198 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_crelle_2014_0131 |
source | De Gruyter journals |
title | Lefschetz properties for noncompact arithmetic ball quotients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lefschetz%20properties%20for%20noncompact%20arithmetic%20ball%20quotients&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Nair,%20Arvind%20N.&rft.date=2017-09-01&rft.volume=2017&rft.issue=730&rft.spage=163&rft.epage=198&rft.pages=163-198&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2014-0131&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2014_01312017730163%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |