Minimality via second variation for microphase separation of diblock copolymer melts
We consider a non-local isoperimetric problem arising as the sharp interface limit of the Ohta–Kawasaki free energy introduced to model microphase separation of diblock copolymers. We perform a second order variational analysis that allows us to provide a quantitative second order minimality conditi...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2017-08, Vol.2017 (729), p.81-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a non-local isoperimetric problem arising as the sharp interface limit of the Ohta–Kawasaki free energy introduced to model microphase separation of diblock copolymers. We perform a second order variational analysis that allows us to provide a quantitative second order minimality condition. We show that critical configurations with positive second variation are indeed strict local minimizers of the problem. Moreover, we provide, via a suitable quantitative inequality of isoperimetric type, an estimate of the deviation from minimality for configurations close to the minimum in the
-topology. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2014-0117 |