Characteristic classes of symmetric products of complex quasi-projective varieties
We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2017-07, Vol.2017 (728), p.35-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 728 |
container_start_page | 35 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2017 |
creator | Cappell, Sylvain E. Maxim, Laurentiu Schürmann, Jörg Shaneson, Julius L. Yokura, Shoji |
description | We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a
complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology
-classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto. |
doi_str_mv | 10.1515/crelle-2014-0114 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2014_0114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2014_0114201772835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw55g_YFg_tmmOVcWjUiUkBGfLsTfgKiHFTgr997iUK6cdzWpWOx9j1wJuBAq8dZHalrgEoTkIoU_YRGiFHJXGUzYBKJFrAfKcXaS0AQAUpZyw5-W7jdYNFEMagitca1OiVPRNkfZdR0PM5jb2fnTDr-v6btvSd_E52hR43mzIDWFHxc7GQEOgdMnOGtsmuvqbU_Z6f_eyfOTrp4fVcrHmDnU1cA-1rdCChkrOsdZKep8dsqV2qkEEr2WtKmxgpqqaCAgsek_UzAClqtSUwfGui31KkRqzjaGzcW8EmAMTc2RiDkzMgUmOLI6RL9vmyp7e4rjPwmz6MX7kZ_-NZlGWcq5Q_QBiSG2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><source>De Gruyter journals</source><creator>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</creator><creatorcontrib>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</creatorcontrib><description>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a
complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology
-classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2014-0114</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2017-07, Vol.2017 (728), p.35-63</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</citedby><cites>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0114/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0114/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><creatorcontrib>Yokura, Shoji</creatorcontrib><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><title>Journal für die reine und angewandte Mathematik</title><description>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a
complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology
-classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw55g_YFg_tmmOVcWjUiUkBGfLsTfgKiHFTgr997iUK6cdzWpWOx9j1wJuBAq8dZHalrgEoTkIoU_YRGiFHJXGUzYBKJFrAfKcXaS0AQAUpZyw5-W7jdYNFEMagitca1OiVPRNkfZdR0PM5jb2fnTDr-v6btvSd_E52hR43mzIDWFHxc7GQEOgdMnOGtsmuvqbU_Z6f_eyfOTrp4fVcrHmDnU1cA-1rdCChkrOsdZKep8dsqV2qkEEr2WtKmxgpqqaCAgsek_UzAClqtSUwfGui31KkRqzjaGzcW8EmAMTc2RiDkzMgUmOLI6RL9vmyp7e4rjPwmz6MX7kZ_-NZlGWcq5Q_QBiSG2u</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Cappell, Sylvain E.</creator><creator>Maxim, Laurentiu</creator><creator>Schürmann, Jörg</creator><creator>Shaneson, Julius L.</creator><creator>Yokura, Shoji</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><author>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><creatorcontrib>Yokura, Shoji</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappell, Sylvain E.</au><au>Maxim, Laurentiu</au><au>Schürmann, Jörg</au><au>Shaneson, Julius L.</au><au>Yokura, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic classes of symmetric products of complex quasi-projective varieties</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>2017</volume><issue>728</issue><spage>35</spage><epage>63</epage><pages>35-63</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a
complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology
-classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2014-0114</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2017-07, Vol.2017 (728), p.35-63 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_crelle_2014_0114 |
source | De Gruyter journals |
title | Characteristic classes of symmetric products of complex quasi-projective varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20classes%20of%20symmetric%20products%20of%20complex%20quasi-projective%20varieties&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Cappell,%20Sylvain%20E.&rft.date=2017-07-01&rft.volume=2017&rft.issue=728&rft.spage=35&rft.epage=63&rft.pages=35-63&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2014-0114&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2014_0114201772835%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |