Characteristic classes of symmetric products of complex quasi-projective varieties

We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2017-07, Vol.2017 (728), p.35-63
Hauptverfasser: Cappell, Sylvain E., Maxim, Laurentiu, Schürmann, Jörg, Shaneson, Julius L., Yokura, Shoji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 728
container_start_page 35
container_title Journal für die reine und angewandte Mathematik
container_volume 2017
creator Cappell, Sylvain E.
Maxim, Laurentiu
Schürmann, Jörg
Shaneson, Julius L.
Yokura, Shoji
description We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology -classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.
doi_str_mv 10.1515/crelle-2014-0114
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2014_0114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2014_0114201772835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw55g_YFg_tmmOVcWjUiUkBGfLsTfgKiHFTgr997iUK6cdzWpWOx9j1wJuBAq8dZHalrgEoTkIoU_YRGiFHJXGUzYBKJFrAfKcXaS0AQAUpZyw5-W7jdYNFEMagitca1OiVPRNkfZdR0PM5jb2fnTDr-v6btvSd_E52hR43mzIDWFHxc7GQEOgdMnOGtsmuvqbU_Z6f_eyfOTrp4fVcrHmDnU1cA-1rdCChkrOsdZKep8dsqV2qkEEr2WtKmxgpqqaCAgsek_UzAClqtSUwfGui31KkRqzjaGzcW8EmAMTc2RiDkzMgUmOLI6RL9vmyp7e4rjPwmz6MX7kZ_-NZlGWcq5Q_QBiSG2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><source>De Gruyter journals</source><creator>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</creator><creatorcontrib>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</creatorcontrib><description>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology -classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2014-0114</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2017-07, Vol.2017 (728), p.35-63</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</citedby><cites>FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0114/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2014-0114/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><creatorcontrib>Yokura, Shoji</creatorcontrib><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><title>Journal für die reine und angewandte Mathematik</title><description>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology -classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw55g_YFg_tmmOVcWjUiUkBGfLsTfgKiHFTgr997iUK6cdzWpWOx9j1wJuBAq8dZHalrgEoTkIoU_YRGiFHJXGUzYBKJFrAfKcXaS0AQAUpZyw5-W7jdYNFEMagitca1OiVPRNkfZdR0PM5jb2fnTDr-v6btvSd_E52hR43mzIDWFHxc7GQEOgdMnOGtsmuvqbU_Z6f_eyfOTrp4fVcrHmDnU1cA-1rdCChkrOsdZKep8dsqV2qkEEr2WtKmxgpqqaCAgsek_UzAClqtSUwfGui31KkRqzjaGzcW8EmAMTc2RiDkzMgUmOLI6RL9vmyp7e4rjPwmz6MX7kZ_-NZlGWcq5Q_QBiSG2u</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Cappell, Sylvain E.</creator><creator>Maxim, Laurentiu</creator><creator>Schürmann, Jörg</creator><creator>Shaneson, Julius L.</creator><creator>Yokura, Shoji</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Characteristic classes of symmetric products of complex quasi-projective varieties</title><author>Cappell, Sylvain E. ; Maxim, Laurentiu ; Schürmann, Jörg ; Shaneson, Julius L. ; Yokura, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-d0ba95a0409285b432ddba9ea74c3f550d42b395f0639bee0e0a5ddeef6052393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><creatorcontrib>Yokura, Shoji</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappell, Sylvain E.</au><au>Maxim, Laurentiu</au><au>Schürmann, Jörg</au><au>Shaneson, Julius L.</au><au>Yokura, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic classes of symmetric products of complex quasi-projective varieties</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>2017</volume><issue>728</issue><spage>35</spage><epage>63</epage><pages>35-63</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology -classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2014-0114</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2017-07, Vol.2017 (728), p.35-63
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2014_0114
source De Gruyter journals
title Characteristic classes of symmetric products of complex quasi-projective varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20classes%20of%20symmetric%20products%20of%20complex%20quasi-projective%20varieties&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Cappell,%20Sylvain%20E.&rft.date=2017-07-01&rft.volume=2017&rft.issue=728&rft.spage=35&rft.epage=63&rft.pages=35-63&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2014-0114&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2014_0114201772835%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true