Characteristic classes of symmetric products of complex quasi-projective varieties

We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2017-07, Vol.2017 (728), p.35-63
Hauptverfasser: Cappell, Sylvain E., Maxim, Laurentiu, Schürmann, Jörg, Shaneson, Julius L., Yokura, Shoji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove generating series formulae for suitable twisted characteristic classes of symmetric products of a complex quasi-projective variety. More concretely, we study homology Hirzebruch classes for motivic coefficients, as well as for complexes of mixed Hodge modules. As a special case, we obtain a generating series formula for the (intersection) homology Hirzebruch classes of symmetric products. In some cases, the latter yields a similar formula for twisted homology -classes generalizing results of Hirzebruch–Zagier and Moonen. Our methods also apply to the study of Todd classes of (complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible sheaves, generalizing to arbitrary coefficients results of Moonen and respectively Ohmoto.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2014-0114