Congruences for critical values of higher derivatives of twisted Hasse–Weil L-functions
Let be an abelian variety over a number field and let be a finite cyclic extension of of -power degree for an odd prime . Under certain technical hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number conjecture (‘eTNC’) for , and as an explicit family of -adic congruences invol...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2017-01, Vol.2017 (722), p.105-135, Article 105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be an abelian variety over a number field
and let
be a finite cyclic extension of
of
-power degree for an odd prime
.
Under certain technical hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number conjecture (‘eTNC’) for
,
and
as an explicit family of
-adic congruences involving values of derivatives of the Hasse–Weil
-functions of twists of
, normalised by completely explicit twisted regulators. This
reinterpretation makes the eTNC amenable to numerical verification and furthermore leads to explicit predictions which refine well-known conjectures of Mazur and Tate. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2014-0081 |