Congruences for critical values of higher derivatives of twisted Hasse–Weil L-functions

Let be an abelian variety over a number field and let be a finite cyclic extension of of -power degree for an odd prime . Under certain technical hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number conjecture (‘eTNC’) for , and as an explicit family of -adic congruences invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2017-01, Vol.2017 (722), p.105-135, Article 105
Hauptverfasser: Bley, Werner, Macias Castillo, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be an abelian variety over a number field and let be a finite cyclic extension of of -power degree for an odd prime . Under certain technical hypotheses, we obtain a reinterpretation of the equivariant Tamagawa number conjecture (‘eTNC’) for , and as an explicit family of -adic congruences involving values of derivatives of the Hasse–Weil -functions of twists of , normalised by completely explicit twisted regulators. This reinterpretation makes the eTNC amenable to numerical verification and furthermore leads to explicit predictions which refine well-known conjectures of Mazur and Tate.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2014-0081