On the normal sheaf of determinantal varieties

Let be a standard determinantal scheme of codimension , i.e. a scheme defined by the maximal minors of a homogeneous polynomial matrix . In this paper, we study the main features of its normal sheaf . We prove that under some mild restrictions: (1) there exists a line bundle on such that is arithmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2016-10, Vol.2016 (719), p.173-209
Hauptverfasser: Kleppe, Jan O., Miró-Roig, Rosa M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a standard determinantal scheme of codimension , i.e. a scheme defined by the maximal minors of a homogeneous polynomial matrix . In this paper, we study the main features of its normal sheaf . We prove that under some mild restrictions: (1) there exists a line bundle on such that is arithmetically Cohen–Macaulay and, even more, it is Ulrich whenever the entries of are linear forms, (2) is simple (hence, indecomposable) and, finally, (3) is μ-(semi)stable provided the entries of are linear forms.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2014-0041