On the normal sheaf of determinantal varieties
Let be a standard determinantal scheme of codimension , i.e. a scheme defined by the maximal minors of a homogeneous polynomial matrix . In this paper, we study the main features of its normal sheaf . We prove that under some mild restrictions: (1) there exists a line bundle on such that is arithmet...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2016-10, Vol.2016 (719), p.173-209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a standard determinantal scheme
of codimension
, i.e. a scheme defined by the maximal minors of a
homogeneous polynomial matrix
. In this paper, we study the main features of its normal sheaf
. We prove that under some mild restrictions: (1) there exists a line bundle
on
such that
is arithmetically Cohen–Macaulay and, even more, it is Ulrich whenever the entries of
are linear forms, (2)
is simple (hence, indecomposable) and, finally, (3)
is μ-(semi)stable provided the entries of
are linear forms. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2014-0041 |