Topological full groups of one-sided shifts of finite type
We explore the topological full group of an essentially principal étale groupoid on a Cantor set. When is minimal, we show that (and its certain normal subgroup) is a complete invariant for the isomorphism class of the étale groupoid . Furthermore, when is either almost finite or purely infinite, th...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-08, Vol.2015 (705), p.35-84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the topological full group
of
an essentially principal étale groupoid
on a Cantor set.
When
is minimal,
we show that
(and its certain normal subgroup) is a complete invariant
for the isomorphism class of the étale groupoid
.
Furthermore, when
is either almost finite or purely infinite,
the commutator subgroup
is shown to be simple.
The étale groupoid
arising from a one-sided irreducible shift of finite type is
a typical example of a purely infinite minimal groupoid.
For such
,
is thought of as a generalization of the Higman–Thompson group.
We prove that
is of type
,
and so in particular it is finitely presented.
This gives us a new infinite family of
finitely presented infinite simple groups.
Also, the abelianization of
is calculated and described
in terms of the homology groups of
. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2013-0041 |