Bogomolov–Sommese vanishing on log canonical pairs

Let ( ) be a projective log canonical pair. We show that for any natural number , the sheaf of reflexive logarithmic -forms does not contain a Weil divisorial subsheaf whose Kodaira–Iitaka dimension exceeds . This generalizes a classical theorem of Bogomolov and Sommese. In fact, we prove a more gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2015-05, Vol.2015 (702), p.109-142
1. Verfasser: Graf, Patrick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( ) be a projective log canonical pair. We show that for any natural number , the sheaf of reflexive logarithmic -forms does not contain a Weil divisorial subsheaf whose Kodaira–Iitaka dimension exceeds . This generalizes a classical theorem of Bogomolov and Sommese. In fact, we prove a more general version of this result which also deals with the introduced by Campana. The main ingredients to the proof are the Extension Theorem of Greb–Kebekus–Kovács–Peternell, a new version of the Negativity Lemma, the minimal model program, and a residue map for symmetric differentials on dlt pairs. We also give an example showing that the statement cannot be generalized to spaces with Du Bois singularities. As an application, we give a Kodaira–Akizuki–Nakano-type vanishing result for log canonical pairs which holds for reflexive as well as for Kähler differentials.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2013-0031