On the Morse–Sard property and level sets of W n ,1 Sobolev functions on ℝ n
We establish Luzin N and Morse–Sard properties for functions from the Sobolev space W n , 1 ( ℝ n ) $\mathrm {W}^{n,1}(\mathbb {R}^n)$ . Using these results we prove that almost all level sets are finite disjoint unions of C 1 $\mathrm {C}^1$ -smooth compact manifolds of dimension n - 1. These resul...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-03, Vol.2015 (700), p.93-112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish Luzin
N
and Morse–Sard properties for functions
from the Sobolev space
W
n
,
1
(
ℝ
n
)
$\mathrm {W}^{n,1}(\mathbb {R}^n)$
. Using these results we
prove that almost all level sets are finite disjoint unions of
C
1
$\mathrm {C}^1$
-smooth compact manifolds of dimension
n
- 1. These results
remain valid also within the larger space of functions of bounded
variation
BV
n
(
ℝ
n
)
$\mathrm {BV}_n(\mathbb {R}^n)$
. For the proofs we establish and use some
new results on Luzin-type approximation of Sobolev and
BV
$\mathrm {BV}$
-functions by
C
k
$\mathrm {C}^k$
-functions, where the exceptional sets
have small Hausdorff content. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2013-0002 |