On the Morse–Sard property and level sets of W n ,1 Sobolev functions on ℝ n

We establish Luzin N and Morse–Sard properties for functions from the Sobolev space W n , 1 ( ℝ n ) $\mathrm {W}^{n,1}(\mathbb {R}^n)$ . Using these results we prove that almost all level sets are finite disjoint unions of C 1 $\mathrm {C}^1$ -smooth compact manifolds of dimension n - 1. These resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2015-03, Vol.2015 (700), p.93-112
Hauptverfasser: Bourgain, Jean, Korobkov, Mikhail V., Kristensen, Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish Luzin N and Morse–Sard properties for functions from the Sobolev space W n , 1 ( ℝ n ) $\mathrm {W}^{n,1}(\mathbb {R}^n)$ . Using these results we prove that almost all level sets are finite disjoint unions of C 1 $\mathrm {C}^1$ -smooth compact manifolds of dimension n - 1. These results remain valid also within the larger space of functions of bounded variation BV n ( ℝ n ) $\mathrm {BV}_n(\mathbb {R}^n)$ . For the proofs we establish and use some new results on Luzin-type approximation of Sobolev and BV $\mathrm {BV}$ -functions by C k $\mathrm {C}^k$ -functions, where the exceptional sets have small Hausdorff content.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2013-0002