The kernel of the reciprocity map of varieties over local fields

For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2015-01, Vol.2015 (698), p.55-69
1. Verfasser: Forré, Patrick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 698
container_start_page 55
container_title Journal für die reine und angewandte Mathematik
container_volume 2015
creator Forré, Patrick
description For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a group which is ℓ-divisible for all primes ℓ ≠ . This result generalizes the work of Shuji Saito and Uwe Jannsen for curves and surfaces to arbitrary dimensions.
doi_str_mv 10.1515/crelle-2012-0122
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2012_0122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2012_0122201569855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-ad4928784282c10a0e909f946836286a7415437f22545d1a1c346206fae4d9503</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j_kD0cnH7MfNUvyCgpd6DiE70a1ptyRbpf_eLPXqYZh3Bp5heBi7lXAnUeK9TxQjCQVSiVLqjM2k0ShQGzxnM4AahZGgLtlVzhsAQFmrGXtYfxL_orSjyIfAxzIl8v0-Db4fj3zr9tP626Wexp4yH74p8Th4F3noKXb5ml0EFzPd_PU5e396XC9fxOrt-XW5WAmvjR6F60yrmroxqlFeggNqoQ2tqRpdqaZytZFodB2UQoOddLJglYIqODJdi6DnDE53fRpyThTsPvVbl45Wgp0M2JMBOxmwk4GCLE7Ij4sjpY4-0uFYgt0Mh7Qrz_6LloBV2yDqX_KiY3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The kernel of the reciprocity map of varieties over local fields</title><source>De Gruyter journals</source><creator>Forré, Patrick</creator><creatorcontrib>Forré, Patrick</creatorcontrib><description>For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a group which is ℓ-divisible for all primes ℓ ≠ . This result generalizes the work of Shuji Saito and Uwe Jannsen for curves and surfaces to arbitrary dimensions.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2012-0122</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2015-01, Vol.2015 (698), p.55-69</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-ad4928784282c10a0e909f946836286a7415437f22545d1a1c346206fae4d9503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2012-0122/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/crelle-2012-0122/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,66761,68545</link.rule.ids></links><search><creatorcontrib>Forré, Patrick</creatorcontrib><title>The kernel of the reciprocity map of varieties over local fields</title><title>Journal für die reine und angewandte Mathematik</title><description>For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a group which is ℓ-divisible for all primes ℓ ≠ . This result generalizes the work of Shuji Saito and Uwe Jannsen for curves and surfaces to arbitrary dimensions.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3j_kD0cnH7MfNUvyCgpd6DiE70a1ptyRbpf_eLPXqYZh3Bp5heBi7lXAnUeK9TxQjCQVSiVLqjM2k0ShQGzxnM4AahZGgLtlVzhsAQFmrGXtYfxL_orSjyIfAxzIl8v0-Db4fj3zr9tP626Wexp4yH74p8Th4F3noKXb5ml0EFzPd_PU5e396XC9fxOrt-XW5WAmvjR6F60yrmroxqlFeggNqoQ2tqRpdqaZytZFodB2UQoOddLJglYIqODJdi6DnDE53fRpyThTsPvVbl45Wgp0M2JMBOxmwk4GCLE7Ij4sjpY4-0uFYgt0Mh7Qrz_6LloBV2yDqX_KiY3c</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Forré, Patrick</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>The kernel of the reciprocity map of varieties over local fields</title><author>Forré, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-ad4928784282c10a0e909f946836286a7415437f22545d1a1c346206fae4d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forré, Patrick</creatorcontrib><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forré, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The kernel of the reciprocity map of varieties over local fields</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>698</issue><spage>55</spage><epage>69</epage><pages>55-69</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a group which is ℓ-divisible for all primes ℓ ≠ . This result generalizes the work of Shuji Saito and Uwe Jannsen for curves and surfaces to arbitrary dimensions.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2012-0122</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2015-01, Vol.2015 (698), p.55-69
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_crelle_2012_0122
source De Gruyter journals
title The kernel of the reciprocity map of varieties over local fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T18%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20kernel%20of%20the%20reciprocity%20map%20of%20varieties%20over%20local%20fields&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Forr%C3%A9,%20Patrick&rft.date=2015-01-01&rft.volume=2015&rft.issue=698&rft.spage=55&rft.epage=69&rft.pages=55-69&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2012-0122&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_crelle_2012_0122201569855%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true