The kernel of the reciprocity map of varieties over local fields
For a smooth and proper variety over a local field with residue characteristic the reciprocity map ρ : SK ) → π ) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of . In this paper we show that its kernel is the direct sum of a finite group and a g...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2015-01, Vol.2015 (698), p.55-69 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a smooth and proper variety
over a local field
with residue characteristic
the reciprocity map
ρ
: SK
) → π
) is a well-defined map from its class group to the corresponding abelianized étale fundamental group of
. In this paper we show that its kernel is the direct sum of a finite group and a group which is ℓ-divisible for all primes ℓ ≠
. This result generalizes the work of Shuji Saito and Uwe Jannsen for curves and surfaces to arbitrary dimensions. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2012-0122 |