The Abel–Jacobi isomorphism for one-cycles on Kirwan's log resolution of the moduli space SUC(2,OC)
In this paper, we consider the moduli space of rank semistable vector bundles with trivial determinant on a smooth projective curve of genus . For = 2, F. Kirwan constructed a smooth log resolution . Based on earlier work of M. Kerr and J. Lewis, Lewis explains in the Appendix the notion of a relati...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2014-11, Vol.2014 (696), p.1-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the moduli space
of rank
semistable vector bundles with trivial determinant on a smooth projective curve
of genus
.
For
= 2, F. Kirwan constructed a smooth log resolution
. Based on earlier
work of M. Kerr and J. Lewis, Lewis explains in the Appendix the notion of a relative Chow
group (w.r.t. the normal crossing divisor), and a subsequent
Abel–Jacobi map on the relative Chow group of null-homologous one-cycles (tensored
with Q). This map takes values in the intermediate Jacobian of the compactly supported cohomology of the stable locus. We show that this is an isomorphism and since the intermediate Jacobian is identified with the Jacobian
, this can be thought of as a weak-representability result for open smooth varieties. A hard Lefschetz theorem is also proved for the odd degree bottom weight cohomology of the moduli space
. When
≥ 2, we compute the codimension two rational Chow groups of
. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2012-0120 |