The Abel–Jacobi isomorphism for one-cycles on Kirwan's log resolution of the moduli space SUC(2,OC)

In this paper, we consider the moduli space of rank semistable vector bundles with trivial determinant on a smooth projective curve of genus . For = 2, F. Kirwan constructed a smooth log resolution . Based on earlier work of M. Kerr and J. Lewis, Lewis explains in the Appendix the notion of a relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2014-11, Vol.2014 (696), p.1-29
Hauptverfasser: Iyer, Jaya N., Lewis, James D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the moduli space of rank semistable vector bundles with trivial determinant on a smooth projective curve of genus . For = 2, F. Kirwan constructed a smooth log resolution . Based on earlier work of M. Kerr and J. Lewis, Lewis explains in the Appendix the notion of a relative Chow group (w.r.t. the normal crossing divisor), and a subsequent Abel–Jacobi map on the relative Chow group of null-homologous one-cycles (tensored with Q). This map takes values in the intermediate Jacobian of the compactly supported cohomology of the stable locus. We show that this is an isomorphism and since the intermediate Jacobian is identified with the Jacobian , this can be thought of as a weak-representability result for open smooth varieties. A hard Lefschetz theorem is also proved for the odd degree bottom weight cohomology of the moduli space . When ≥ 2, we compute the codimension two rational Chow groups of .
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2012-0120