A comparison of Paley–Wiener theorems for real reductive Lie groups
In this paper we make a detailed comparison between the Paley–Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group . We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2014-10, Vol.2014 (695), p.99-149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we make a detailed comparison between the Paley–Wiener theorems of
J. Arthur and P. Delorme for a real reductive Lie group
. We prove that these theorems are equivalent from an a priori point of view.
We also give an alternative formulation of the theorems in terms of the Hecke algebra
of bi-
-finite distributions supported on
, a maximal compact subgroup of
. Our techniques
involve derivatives of holomorphic families of continuous representations and Harish-Chandra modules. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2012-0105 |