A comparison of Paley–Wiener theorems for real reductive Lie groups

In this paper we make a detailed comparison between the Paley–Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group . We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2014-10, Vol.2014 (695), p.99-149
Hauptverfasser: van den Ban, Erik P., Souaifi, Sofiane
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we make a detailed comparison between the Paley–Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group . We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra of bi- -finite distributions supported on , a maximal compact subgroup of . Our techniques involve derivatives of holomorphic families of continuous representations and Harish-Chandra modules.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2012-0105