Stokes factors and multilogarithms
Let G be a complex, affine algebraic group and a meromorphic connection on the trivial G -bundle over , with a pole of order 2 at zero and a pole of order 1 at infinity. We show that the map taking the residue of at zero to the corresponding Stokes factors is given by an explicit, universal Lie seri...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2013-09, Vol.2013 (682), p.89-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a complex, affine algebraic group and
a meromorphic connection on the trivial
G
-bundle over
, with a pole of order 2 at zero and a pole of order
1 at infinity. We show that the map
taking the residue
of
at zero to the corresponding Stokes factors is
given by an explicit, universal Lie series whose coefficients
are multilogarithms. Using a non-commutative analogue
of the compositional inversion of formal power series, we
show that the same holds for the inverse of
, and that
the corresponding Lie series coincides with the generating
function for counting invariants in abelian categories constructed
by D. Joyce. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2012-0046 |