Stokes factors and multilogarithms

Let G be a complex, affine algebraic group and a meromorphic connection on the trivial G -bundle over , with a pole of order 2 at zero and a pole of order 1 at infinity. We show that the map taking the residue of at zero to the corresponding Stokes factors is given by an explicit, universal Lie seri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2013-09, Vol.2013 (682), p.89-128
Hauptverfasser: Bridgeland, Tom, Toledano Laredo, Valerio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a complex, affine algebraic group and a meromorphic connection on the trivial G -bundle over , with a pole of order 2 at zero and a pole of order 1 at infinity. We show that the map taking the residue of at zero to the corresponding Stokes factors is given by an explicit, universal Lie series whose coefficients are multilogarithms. Using a non-commutative analogue of the compositional inversion of formal power series, we show that the same holds for the inverse of , and that the corresponding Lie series coincides with the generating function for counting invariants in abelian categories constructed by D. Joyce.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2012-0046