The Newton stratification on deformations of local G-shtukas
Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport–Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne–Lusztig varietie...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2011-07, Vol.2011 (656), p.87-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport–Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne–Lusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne–Lusztig variety in that point. This yields bounds on the dimension and proves equidimensionality of the basic affine Deligne–Lusztig varieties. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle.2011.044 |