Un théorème de la masse positive pour le problème de Yamabe en dimension paire
Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to th...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2011-01, Vol.2011 (650), p.101-106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; fre |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 650 |
container_start_page | 101 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2011 |
creator | Jammes, Pierre |
description | Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption. |
doi_str_mv | 10.1515/crelle.2011.005 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2011_005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_CW905V20_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKvX3uYFtp3JoZtcSvFQKEih1XoVstksRvdQkir6RvocfTG3VL36h-H7B-Yj5BJhhBLl2EVf137EAHEEII_IAAWXmeRCHpMBQC4zgcBOyVlKL9ATmLMBWaxaun3efXdx99V4WnpaW9rYlDzddClsw_t-eIu07jN2Rf2HPdnGFp76lpah8W0KXUs3NkR_Tk4qWyd_8ZtDsrq5Xk7vsvn97Wx6Nc8cMrHOlKg0dyXDSliupEStOCpeOASnPJcWKtAT5cCWut-xPOfFhFuntVNWW86HZHy462KXUvSV2cTQ2PhpEMzeiDkYMXsjpv-3b2SHRkhb__GP2_hqJjnPpVkshZk-apAPDMya_wBsvmWr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><source>De Gruyter journals</source><creator>Jammes, Pierre</creator><creatorcontrib>Jammes, Pierre</creatorcontrib><description>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle.2011.005</identifier><language>eng ; fre</language><publisher>Walter de Gruyter GmbH & Co. KG</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2011-01, Vol.2011 (650), p.101-106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</citedby><cites>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jammes, Pierre</creatorcontrib><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWKvX3uYFtp3JoZtcSvFQKEih1XoVstksRvdQkir6RvocfTG3VL36h-H7B-Yj5BJhhBLl2EVf137EAHEEII_IAAWXmeRCHpMBQC4zgcBOyVlKL9ATmLMBWaxaun3efXdx99V4WnpaW9rYlDzddClsw_t-eIu07jN2Rf2HPdnGFp76lpah8W0KXUs3NkR_Tk4qWyd_8ZtDsrq5Xk7vsvn97Wx6Nc8cMrHOlKg0dyXDSliupEStOCpeOASnPJcWKtAT5cCWut-xPOfFhFuntVNWW86HZHy462KXUvSV2cTQ2PhpEMzeiDkYMXsjpv-3b2SHRkhb__GP2_hqJjnPpVkshZk-apAPDMya_wBsvmWr</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Jammes, Pierre</creator><general>Walter de Gruyter GmbH & Co. KG</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201101</creationdate><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><author>Jammes, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jammes, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jammes, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2011-01</date><risdate>2011</risdate><volume>2011</volume><issue>650</issue><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</abstract><pub>Walter de Gruyter GmbH & Co. KG</pub><doi>10.1515/crelle.2011.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2011-01, Vol.2011 (650), p.101-106 |
issn | 0075-4102 1435-5345 |
language | eng ; fre |
recordid | cdi_crossref_primary_10_1515_crelle_2011_005 |
source | De Gruyter journals |
title | Un théorème de la masse positive pour le problème de Yamabe en dimension paire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Un%20th%C3%A9or%C3%A8me%20de%20la%20masse%20positive%20pour%20le%20probl%C3%A8me%20de%20Yamabe%20en%20dimension%20paire&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Jammes,%20Pierre&rft.date=2011-01&rft.volume=2011&rft.issue=650&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle.2011.005&rft_dat=%3Cistex_cross%3Eark_67375_QT4_CW905V20_X%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |