Un théorème de la masse positive pour le problème de Yamabe en dimension paire

Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2011-01, Vol.2011 (650), p.101-106
1. Verfasser: Jammes, Pierre
Format: Artikel
Sprache:eng ; fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 650
container_start_page 101
container_title Journal für die reine und angewandte Mathematik
container_volume 2011
creator Jammes, Pierre
description Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.
doi_str_mv 10.1515/crelle.2011.005
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_crelle_2011_005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_CW905V20_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKvX3uYFtp3JoZtcSvFQKEih1XoVstksRvdQkir6RvocfTG3VL36h-H7B-Yj5BJhhBLl2EVf137EAHEEII_IAAWXmeRCHpMBQC4zgcBOyVlKL9ATmLMBWaxaun3efXdx99V4WnpaW9rYlDzddClsw_t-eIu07jN2Rf2HPdnGFp76lpah8W0KXUs3NkR_Tk4qWyd_8ZtDsrq5Xk7vsvn97Wx6Nc8cMrHOlKg0dyXDSliupEStOCpeOASnPJcWKtAT5cCWut-xPOfFhFuntVNWW86HZHy462KXUvSV2cTQ2PhpEMzeiDkYMXsjpv-3b2SHRkhb__GP2_hqJjnPpVkshZk-apAPDMya_wBsvmWr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><source>De Gruyter journals</source><creator>Jammes, Pierre</creator><creatorcontrib>Jammes, Pierre</creatorcontrib><description>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle.2011.005</identifier><language>eng ; fre</language><publisher>Walter de Gruyter GmbH &amp; Co. KG</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2011-01, Vol.2011 (650), p.101-106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</citedby><cites>FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jammes, Pierre</creatorcontrib><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWKvX3uYFtp3JoZtcSvFQKEih1XoVstksRvdQkir6RvocfTG3VL36h-H7B-Yj5BJhhBLl2EVf137EAHEEII_IAAWXmeRCHpMBQC4zgcBOyVlKL9ATmLMBWaxaun3efXdx99V4WnpaW9rYlDzddClsw_t-eIu07jN2Rf2HPdnGFp76lpah8W0KXUs3NkR_Tk4qWyd_8ZtDsrq5Xk7vsvn97Wx6Nc8cMrHOlKg0dyXDSliupEStOCpeOASnPJcWKtAT5cCWut-xPOfFhFuntVNWW86HZHy462KXUvSV2cTQ2PhpEMzeiDkYMXsjpv-3b2SHRkhb__GP2_hqJjnPpVkshZk-apAPDMya_wBsvmWr</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Jammes, Pierre</creator><general>Walter de Gruyter GmbH &amp; Co. KG</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201101</creationdate><title>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</title><author>Jammes, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124X-84f93cd21f4a38551983183bc10c8e35a0f0968c0ad9c102773b63ac99c8a9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jammes, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jammes, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Un théorème de la masse positive pour le problème de Yamabe en dimension paire</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2011-01</date><risdate>2011</risdate><volume>2011</volume><issue>650</issue><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.</abstract><pub>Walter de Gruyter GmbH &amp; Co. KG</pub><doi>10.1515/crelle.2011.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2011-01, Vol.2011 (650), p.101-106
issn 0075-4102
1435-5345
language eng ; fre
recordid cdi_crossref_primary_10_1515_crelle_2011_005
source De Gruyter journals
title Un théorème de la masse positive pour le problème de Yamabe en dimension paire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Un%20th%C3%A9or%C3%A8me%20de%20la%20masse%20positive%20pour%20le%20probl%C3%A8me%20de%20Yamabe%20en%20dimension%20paire&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Jammes,%20Pierre&rft.date=2011-01&rft.volume=2011&rft.issue=650&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle.2011.005&rft_dat=%3Cistex_cross%3Eark_67375_QT4_CW905V20_X%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true