Un théorème de la masse positive pour le problème de Yamabe en dimension paire

Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2011-01, Vol.2011 (650), p.101-106
1. Verfasser: Jammes, Pierre
Format: Artikel
Sprache:eng ; fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (M, g) be a compact conformally flat manifold of dimension n ≧ 4 with positive scalar curvature. According to a positive mass theorem by Schoen and Yau, the constant term in the development of the Green function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. On spin manifolds, there is an elementary proof of this fact by Ammann and Humbert, based on a proof of Witten. Using differential forms instead of spinors, we give an elementary proof on even dimensional manifolds, without any other topological assumption.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle.2011.005