Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery
A novel polymerizable hydrophobic monomer 1-(4-dodecyloxy-phenyl)-propenone (DPP) was synthesized by esterification, Frise rearrangement and Williamson etherification; then, the obtained DPP was copolymerized with 2-(acrylamido)-dodecanesulfonic acid (AMC 12 S) and acrylamide (AM) initiated by a red...
Gespeichert in:
Veröffentlicht in: | Chemical papers 2015-12, Vol.69 (12), p.1598-1607 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel polymerizable hydrophobic monomer 1-(4-dodecyloxy-phenyl)-propenone (DPP) was synthesized by esterification, Frise rearrangement and Williamson etherification; then, the obtained DPP was copolymerized with 2-(acrylamido)-dodecanesulfonic acid (AMC
12
S) and acrylamide (AM) initiated by a redox initiation system in an aqueous medium to enhance oil recovery (EOR). AM/AMC
12
S/DPP (PADP) was characterized by FT-IR
1
H NMR spectroscopy, environmental scanning electron microscopy (ESEM), DSC-TG, fluorescent probe, core flood test, etc. Results of ESEM and fluorescent probe indicate that hydrophobic microdomains and associating three-dimensional networks were formed in the aqueous solution of PADP. Results of DSC-TG demonstrated that long carbon chains, aromatic groups and sulfonic groups were incorporated into the PADP polymer, which can lead to a significant increase of the rigidity of molecular chains. Performance evaluation of experiments showed superior properties in regard to temperature-tolerance, shear-tolerance and salt-tolerance. In the Sandpack Flooding Test, PADP brine solution showed a significant increase in EOR at 65°C because of its high thickening capability. All these features indicate that PADP has a potential application in EOR at harsh conditions. |
---|---|
ISSN: | 0366-6352 1336-9075 |
DOI: | 10.1515/chempap-2015-0185 |