A Priori Bounds and Existence of Solutions for Slightly Superlinear Elliptic Problems

We consider the semilinear elliptic problem where a is a continuous function which may change sign and f is superlinear but does not satisfy the standard Ambrosetti-Rabinowitz condition. We show that if f is regularly varying of index one at infinity then the above problem has a positive solution, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2015-11, Vol.15 (4), p.923-938
Hauptverfasser: García-Melián, J., Iturriaga, L., Quoirin, H. Ramos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the semilinear elliptic problem where a is a continuous function which may change sign and f is superlinear but does not satisfy the standard Ambrosetti-Rabinowitz condition. We show that if f is regularly varying of index one at infinity then the above problem has a positive solution, provided α satisfies some additional assumptions. Our proof uses an abstract theorem due to L. Jeanjean on critical points of functionals with mountain-pass structure, and it relies on the obtention of a priori bounds for positive solutions..
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2015-0409