Borderline Variational Problems Involving Fractional Laplacians and Critical Singularities
We consider the problem of attainability of the best constant C > 0 in the following critical fractional Hardy-Sobolev inequality: For all where and γ ∈ ℝ. This allows us to establish the existence of nontrivial weak solutions for the following doubly critical problem on ℝ , where is the critical...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2015-08, Vol.15 (3), p.527-555 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of attainability of the best constant C > 0 in the following critical fractional Hardy-Sobolev inequality: For all
where
and γ ∈ ℝ. This allows us to establish the existence of nontrivial weak solutions for the following doubly critical problem on ℝ
,
where
is the critical α-fractional Sobolev exponent, and
, the latter being the best fractional Hardy constant on ℝ
. |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2015-0302 |