Borderline Variational Problems Involving Fractional Laplacians and Critical Singularities

We consider the problem of attainability of the best constant C > 0 in the following critical fractional Hardy-Sobolev inequality: For all where and γ ∈ ℝ. This allows us to establish the existence of nontrivial weak solutions for the following doubly critical problem on ℝ , where is the critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2015-08, Vol.15 (3), p.527-555
Hauptverfasser: Ghoussoub, Nassif, Shakerian, Shaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of attainability of the best constant C > 0 in the following critical fractional Hardy-Sobolev inequality: For all where and γ ∈ ℝ. This allows us to establish the existence of nontrivial weak solutions for the following doubly critical problem on ℝ , where is the critical α-fractional Sobolev exponent, and , the latter being the best fractional Hardy constant on ℝ .
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2015-0302