Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation

We use the variational concept of Γ-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation u = ε Δu + u[a (x) − u ], for (t, x) ∈ ℝ × Ω, where Ω ⊂ ℝ and a is positive, supplied with no-flux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2015-05, Vol.15 (2), p.363-376
Hauptverfasser: Nascimento, Arnaldo Simal do, Sônego, Maicon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the variational concept of Γ-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation u = ε Δu + u[a (x) − u ], for (t, x) ∈ ℝ × Ω, where Ω ⊂ ℝ and a is positive, supplied with no-flux boundary condition. Let γ ⊂ Ω be a smooth simple closed curve and N(γ) a narrow tubular neighborhood of γ. Roughly speaking, the sufficient condition found for existence of such solutions relates the geometric profile of the function a in N(γ) to the signed curvature of γ .
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2015-0205