Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation
We use the variational concept of Γ-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation u = ε Δu + u[a (x) − u ], for (t, x) ∈ ℝ × Ω, where Ω ⊂ ℝ and a is positive, supplied with no-flux...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2015-05, Vol.15 (2), p.363-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the variational concept of Γ-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation u
= ε
Δu + u[a
(x) − u
], for (t, x) ∈ ℝ
× Ω, where Ω ⊂ ℝ
and a is positive, supplied with no-flux boundary condition. Let γ ⊂ Ω be a smooth simple closed curve and N(γ) a narrow tubular neighborhood of γ. Roughly speaking, the sufficient condition found for existence of such solutions relates the geometric profile of the function a in N(γ) to the signed curvature of γ . |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2015-0205 |