Superposition Operators Between Higher-order Sobolev Spaces and a Multivariate Faà di Bruno Formula: Supercritical Case
This paper is a continuation of the work begun in [6] on superposition operators, (N u) (x) = g(u(x)), between two arbitrary Sobolev spaces. Sufficient conditions which ensure the well-definedness, the continuity and the validity of the higher-order chain rule for such operators are given in the sup...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2014-02, Vol.14 (1), p.137-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is a continuation of the work begun in [6] on superposition operators, (N
u) (x) = g(u(x)), between two arbitrary Sobolev spaces. Sufficient conditions which ensure the well-definedness, the continuity and the validity of the higher-order chain rule for such operators are given in the supercritical case (see Remark 1.1). As a consequence of these properties, it is proved that N
(W
(Ω) ∩ W
(Ω)) ⊂ W
(Ω). |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2014-0105 |