On Nonuniformly Subelliptic Equations of Q−sub-Laplacian Type with Critical Growth in the Heisenberg Group
Let ℍ = ℝ × ℝ be the n−dimensional Heisenberg group, be its subelliptic gradient operator, and ρ (ξ) = ( |z| + t ) for ξ = (z, t) ∈ ℍ be the distance function in ℍ . Denote ℍ = ℍ , Q = 2n + 2 and Q′ = Q/(Q − 1). Let Ω be a bounded domain with smooth boundary in ℍ. Motivated by the Moser-Trudinger in...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2012-08, Vol.12 (3), p.659-681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ℍ
= ℝ
× ℝ be the n−dimensional Heisenberg group,
be its subelliptic gradient operator, and ρ (ξ) = ( |z|
+ t
)
for ξ = (z, t) ∈ ℍ
be the distance function in ℍ
. Denote ℍ = ℍ
, Q = 2n + 2 and Q′ = Q/(Q − 1). Let Ω be a bounded domain with smooth boundary in ℍ. Motivated by the Moser-Trudinger inequalities on the Heisenberg group, we study the existence of solution to a nonuniformly subelliptic equation of the form
where f : Ω × ℝ → ℝ behaves like exp ( α |u|
) when |u| → ∞. In the case of Q−sub- Laplacian
we will apply minimax methods to obtain multiplicity of weak solutions. |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2012-0312 |