On Nonuniformly Subelliptic Equations of Q−sub-Laplacian Type with Critical Growth in the Heisenberg Group

Let ℍ = ℝ × ℝ be the n−dimensional Heisenberg group, be its subelliptic gradient operator, and ρ (ξ) = ( |z| + t ) for ξ = (z, t) ∈ ℍ be the distance function in ℍ . Denote ℍ = ℍ , Q = 2n + 2 and Q′ = Q/(Q − 1). Let Ω be a bounded domain with smooth boundary in ℍ. Motivated by the Moser-Trudinger in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2012-08, Vol.12 (3), p.659-681
Hauptverfasser: Lam, Nguyen, Lu, Guozhen, Tang, Hanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ℍ = ℝ × ℝ be the n−dimensional Heisenberg group, be its subelliptic gradient operator, and ρ (ξ) = ( |z| + t ) for ξ = (z, t) ∈ ℍ be the distance function in ℍ . Denote ℍ = ℍ , Q = 2n + 2 and Q′ = Q/(Q − 1). Let Ω be a bounded domain with smooth boundary in ℍ. Motivated by the Moser-Trudinger inequalities on the Heisenberg group, we study the existence of solution to a nonuniformly subelliptic equation of the form where f : Ω × ℝ → ℝ behaves like exp ( α |u| ) when |u| → ∞. In the case of Q−sub- Laplacian we will apply minimax methods to obtain multiplicity of weak solutions.
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2012-0312