Positive Solutions of an Indefinite Prescribed Mean Curvature Problem on a General Domain
The existence of positive solutions is proved for the prescribed mean curvature problem where Ω ⊂ℝ is a bounded smooth domain, not necessarily radially symmetric. We assume that ∫ f(x, s) ds is locally subquadratic at 0, ∫ g(x, s) ds is superquadratic at 0 and λ > 0 is sufficiently small. A multi...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2004-02, Vol.4 (1), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of positive solutions is proved for the prescribed mean curvature problem
where Ω ⊂ℝ
is a bounded smooth domain, not necessarily radially symmetric. We assume that ∫
f(x, s) ds is locally subquadratic at 0, ∫
g(x, s) ds is superquadratic at 0 and λ > 0 is sufficiently small. A multiplicity result is also obtained, when ∫
f(x, s) ds has an oscillatory behaviour near 0. We allow f and g to change sign in any neighbourhood of 0. |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2004-0101 |