Positive Solutions of an Indefinite Prescribed Mean Curvature Problem on a General Domain

The existence of positive solutions is proved for the prescribed mean curvature problem where Ω ⊂ℝ is a bounded smooth domain, not necessarily radially symmetric. We assume that ∫ f(x, s) ds is locally subquadratic at 0, ∫ g(x, s) ds is superquadratic at 0 and λ > 0 is sufficiently small. A multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2004-02, Vol.4 (1), p.1-13
Hauptverfasser: Habets, Patrick, Omari, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of positive solutions is proved for the prescribed mean curvature problem where Ω ⊂ℝ is a bounded smooth domain, not necessarily radially symmetric. We assume that ∫ f(x, s) ds is locally subquadratic at 0, ∫ g(x, s) ds is superquadratic at 0 and λ > 0 is sufficiently small. A multiplicity result is also obtained, when ∫ f(x, s) ds has an oscillatory behaviour near 0. We allow f and g to change sign in any neighbourhood of 0.
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2004-0101