Rank-(n – 1) convexity and quasiconvexity for divergence free fields
We prove that rank-(n – 1) convexity does not imply quasiconvexity with respect to divergence free fields (so-called S-quasiconvexity) in for m > n, by adapting the well-known Šverák's counterexample to the solenoidal setting. On the other hand, we also remark that rank-(n – 1) convexity and...
Gespeichert in:
Veröffentlicht in: | Advances in calculus of variations 2010-07, Vol.3 (3), p.279-285 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that rank-(n – 1) convexity does not imply quasiconvexity with respect to divergence free fields (so-called S-quasiconvexity) in for m > n, by adapting the well-known Šverák's counterexample to the solenoidal setting. On the other hand, we also remark that rank-(n – 1) convexity and S-quasiconvexity turn out to be equivalent in the space of n × n diagonal matrices. |
---|---|
ISSN: | 1864-8258 1864-8266 |
DOI: | 10.1515/acv.2010.010 |