Principally separated non-separated solvable groups

If is a set of primes, a finite group is called block -separated if for every two distinct irreducible complex characters α, ∈ Irr( ) there is a prime ∈ such that α and are in different -blocks. The group is called principally -separated if the above holds whenever = 1 . Bessenrodt and Zhang conject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of group theory 2009-03, Vol.12 (2), p.197-200
Hauptverfasser: Turull, Alexandre, Wolf, Thomas R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If is a set of primes, a finite group is called block -separated if for every two distinct irreducible complex characters α, ∈ Irr( ) there is a prime ∈ such that α and are in different -blocks. The group is called principally -separated if the above holds whenever = 1 . Bessenrodt and Zhang conjectured that if is a solvable principally -separated group then is -separated. We construct a family of counter-examples to this conjecture.
ISSN:1433-5883
1435-4446
DOI:10.1515/JGT.2008.071