Second-Order Characterizations of Convex and Pseudoconvex Functions
The present paper gives characterizations of radially u.s.c. convex and pseudoconvex functions f : X → ℝ defined on a convex subset X of a real linear space E in terms of first and second-order upper Dini-directional derivatives. Observing that the property f radially u.s.c. does not require a topol...
Gespeichert in:
Veröffentlicht in: | Journal of applied analysis 2003-12, Vol.9 (2), p.261-273 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper gives characterizations of radially u.s.c. convex and pseudoconvex functions f : X → ℝ defined on a convex subset X of a real linear space E in terms of first and second-order upper Dini-directional derivatives. Observing that the property f radially u.s.c. does not require a topological structure of E, we draw the possibility to state our results for arbitrary real linear spaces. For convex functions we extend a theorem of Huang, Ng [Math. Oper. Res. 22: 747–753, 1997]. For pseudoconvex functions we generalize results of Diewert, Avriel, Zang [J. Econom. Theory 25: 397–420, 1981] and Crouzeix [Generalized Convexity, Generalized Monotonicity: Recent Results: 237–256, Kluwer Academic Publisher, 1998]. While some known results on pseudoconvex functions are stated in global concepts (e.g. Komlosi [Math. Pro Programming 26: 232–237, 1983]), we succeeded in realizing the task to confine to local concepts only. |
---|---|
ISSN: | 1425-6908 1869-6082 |
DOI: | 10.1515/JAA.2003.261 |