Path integrals on manifolds by finite dimensional approximation
Let M be a compact Riemannian manifold without boundary and let H be a self-adjoint generalized Laplace operator acting on sections in a bundle over M. We give a path integral formula for the solution to the corresponding heat equation. This is based on approximating path space by finite dimensional...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2008-12, Vol.2008 (625), p.29-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a compact Riemannian manifold without boundary and let H be a self-adjoint generalized Laplace operator acting on sections in a bundle over M. We give a path integral formula for the solution to the corresponding heat equation. This is based on approximating path space by finite dimensional spaces of geodesic polygons. We also show a uniform convergence result for the heat kernels. This yields a simple and natural proof for the Hess-Schrader-Uhlenbrock estimate and a path integral formula for the trace of the heat operator. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/CRELLE.2008.089 |