Path integrals on manifolds by finite dimensional approximation

Let M be a compact Riemannian manifold without boundary and let H be a self-adjoint generalized Laplace operator acting on sections in a bundle over M. We give a path integral formula for the solution to the corresponding heat equation. This is based on approximating path space by finite dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2008-12, Vol.2008 (625), p.29-57
Hauptverfasser: Bär, Christian, Pfäffle, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a compact Riemannian manifold without boundary and let H be a self-adjoint generalized Laplace operator acting on sections in a bundle over M. We give a path integral formula for the solution to the corresponding heat equation. This is based on approximating path space by finite dimensional spaces of geodesic polygons. We also show a uniform convergence result for the heat kernels. This yields a simple and natural proof for the Hess-Schrader-Uhlenbrock estimate and a path integral formula for the trace of the heat operator.
ISSN:0075-4102
1435-5345
DOI:10.1515/CRELLE.2008.089