Well-posedness, blow-up phenomena, and global solutions for the b-equation
In the paper we first establish the local well-posedness for a family of nonlinear dispersive equations, the so called b-equation. Then we describe the precise blow-up scenario. Moreover, we prove that for the b-equation we do have the coexistence of global in time solutions and blow-up phenomena: D...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2008-11, Vol.2008 (624), p.51-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper we first establish the local well-posedness for a family of nonlinear dispersive equations, the so called b-equation. Then we describe the precise blow-up scenario. Moreover, we prove that for the b-equation we do have the coexistence of global in time solutions and blow-up phenomena: Depending on the initial data solutions may exist for ever, while other data force the solution to produce a singularity in finite time. Finally, we prove the uniqueness and existence of global weak solution to the equation provided the initial data satisfy certain sign conditions. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/CRELLE.2008.080 |