Heat semigroup and functions of bounded variation on Riemannian manifolds

Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t)) t≧0 be the heat semigroup on M. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2007-12, Vol.2007 (613), p.99-119
Hauptverfasser: Miranda, M, Pallara, D, Paronetto, F, Preunkert, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t)) t≧0 be the heat semigroup on M. We show that the total variation of the gradient of a function u ∈ L 1(M) equals the limit of the L 1-norm of ∇T(t)u as t → 0. In particular, this limit is finite if and only if u is a function of bounded variation.
ISSN:0075-4102
1435-5345
DOI:10.1515/CRELLE.2007.093