Heat semigroup and functions of bounded variation on Riemannian manifolds
Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t)) t≧0 be the heat semigroup on M. We show...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2007-12, Vol.2007 (613), p.99-119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t)) t≧0 be the heat semigroup on M. We show that the total variation of the gradient of a function u ∈ L 1(M) equals the limit of the L 1-norm of ∇T(t)u as t → 0. In particular, this limit is finite if and only if u is a function of bounded variation. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/CRELLE.2007.093 |