The geometry of k-harmonic manifolds

An n-dimensional Riemannian manifold is called k-harmonic for some integer k, 1 ≤ k ≤ n - 1, if the k-th elementary symmetric functions of the principal curvatures of small geodesic spheres are radial functions. We prove that k-harmonic manifolds are necessarily 2-stein and show that locally symmetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in geometry 2006-01, Vol.6 (1), p.53-70
Hauptverfasser: Nicolodi, Lorenzo, Vanhecke, Lieven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An n-dimensional Riemannian manifold is called k-harmonic for some integer k, 1 ≤ k ≤ n - 1, if the k-th elementary symmetric functions of the principal curvatures of small geodesic spheres are radial functions. We prove that k-harmonic manifolds are necessarily 2-stein and show that locally symmetric manifolds which are k-harmonic for one k, are k-harmonic for all k. We then establish some results relating the harmonic and k-harmonic conditions for the class of non-compact harmonic non-symmetric spaces constructed by Damek and Ricci. We also discuss other notions of k-harmonicity and the problem of their equivalence.
ISSN:1615-715X
1615-7168
DOI:10.1515/ADVGEOM.2006.004