The geometry of k-harmonic manifolds
An n-dimensional Riemannian manifold is called k-harmonic for some integer k, 1 ≤ k ≤ n - 1, if the k-th elementary symmetric functions of the principal curvatures of small geodesic spheres are radial functions. We prove that k-harmonic manifolds are necessarily 2-stein and show that locally symmetr...
Gespeichert in:
Veröffentlicht in: | Advances in geometry 2006-01, Vol.6 (1), p.53-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An n-dimensional Riemannian manifold is called k-harmonic for some integer k, 1 ≤ k ≤ n - 1, if the k-th elementary symmetric functions of the principal curvatures of small geodesic spheres are radial functions. We prove that k-harmonic manifolds are necessarily 2-stein and show that locally symmetric manifolds which are k-harmonic for one k, are k-harmonic for all k. We then establish some results relating the harmonic and k-harmonic conditions for the class of non-compact harmonic non-symmetric spaces constructed by Damek and Ricci. We also discuss other notions of k-harmonicity and the problem of their equivalence. |
---|---|
ISSN: | 1615-715X 1615-7168 |
DOI: | 10.1515/ADVGEOM.2006.004 |