Computing Modular Data for Pointed Fusion Categories
A formula for the modular data of Z(Vecω G) was given by Coste, Gannon, and Ruelle in [9], but without an explicit proof for arbitrary 3-cocycles. This paper presents a derivation using the representation category of the quasi Hopf algebra D ω G. Further, we have written code to compute this modular...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2021-01, Vol.70 (2), p.561-593 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A formula for the modular data of Z(Vecω
G) was given by Coste, Gannon, and Ruelle in [9], but without an explicit proof for arbitrary 3-cocycles. This paper presents a derivation using the representation category of the quasi Hopf algebra D
ω
G. Further, we have written code to compute this modular data for many pairs of small finite groups and 3-cocycles. This code is optimised by taking advantage of Galois symmetries of the S and T matrices. We have posted a database of modular data for the Drinfeld center of every Morita equivalence class of pointed fusion categories of dimension less than 64. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2021.70.8309 |