Computing Modular Data for Pointed Fusion Categories

A formula for the modular data of Z(Vecω G) was given by Coste, Gannon, and Ruelle in [9], but without an explicit proof for arbitrary 3-cocycles. This paper presents a derivation using the representation category of the quasi Hopf algebra D ω G. Further, we have written code to compute this modular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2021-01, Vol.70 (2), p.561-593
Hauptverfasser: Gruen, Angus, Morrison, Scott
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A formula for the modular data of Z(Vecω G) was given by Coste, Gannon, and Ruelle in [9], but without an explicit proof for arbitrary 3-cocycles. This paper presents a derivation using the representation category of the quasi Hopf algebra D ω G. Further, we have written code to compute this modular data for many pairs of small finite groups and 3-cocycles. This code is optimised by taking advantage of Galois symmetries of the S and T matrices. We have posted a database of modular data for the Drinfeld center of every Morita equivalence class of pointed fusion categories of dimension less than 64.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2021.70.8309