Atomic Blocks for Noncommutative Martingales
Given a probability space (Ω,Σ,μ), the Hardy space H1(Ω) that is associated with the martingale square function does not admit a classical atomic decomposition when the underlying filtration is not regular. In this paper, we construct a decomposition of H1(Ω) into "atomic blocks" in the sp...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2016-01, Vol.65 (4), p.1425-1443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a probability space (Ω,Σ,μ), the Hardy space H1(Ω) that is associated with the martingale square function does not admit a classical atomic decomposition when the underlying filtration is not regular. In this paper, we construct a decomposition of H1(Ω) into "atomic blocks" in the spirit of Tolsa, which we will introduce for martingales. We provide three proofs of this result. Only the first one also applies to noncommutative martingales, the main target of this paper. The other proofs emphasize alternative approaches for commutative martingales. One might be well known to experts, using a weaker notion of atom and approximation by atomic filtrations. The last one adapts Tolsa's argument replacing medians by conditional medians. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2016.65.5860 |