Atomic Blocks for Noncommutative Martingales

Given a probability space (Ω,Σ,μ), the Hardy space H1(Ω) that is associated with the martingale square function does not admit a classical atomic decomposition when the underlying filtration is not regular. In this paper, we construct a decomposition of H1(Ω) into "atomic blocks" in the sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2016-01, Vol.65 (4), p.1425-1443
Hauptverfasser: Conde-Alonso, Jose M., Parcet, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a probability space (Ω,Σ,μ), the Hardy space H1(Ω) that is associated with the martingale square function does not admit a classical atomic decomposition when the underlying filtration is not regular. In this paper, we construct a decomposition of H1(Ω) into "atomic blocks" in the spirit of Tolsa, which we will introduce for martingales. We provide three proofs of this result. Only the first one also applies to noncommutative martingales, the main target of this paper. The other proofs emphasize alternative approaches for commutative martingales. One might be well known to experts, using a weaker notion of atom and approximation by atomic filtrations. The last one adapts Tolsa's argument replacing medians by conditional medians.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2016.65.5860