Vertical Flows and a General Currential Homotopy Formula

We generalize some results of Harvey, Lawson, and Latschev about transgression formulas. The focus here is on flowing forms via vertical vector fields, especially tame Morse-Bott-Smale vector fields. We prove a general transgression formula including also a version covering non-compact situations. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2016-01, Vol.65 (1), p.93-169
1. Verfasser: Cibotaru, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize some results of Harvey, Lawson, and Latschev about transgression formulas. The focus here is on flowing forms via vertical vector fields, especially tame Morse-Bott-Smale vector fields. We prove a general transgression formula including also a version covering non-compact situations. A second, companion paper [10] contains several applications, one of which is an answer to a question of Quillen. We also prove a Poincaré duality result concerning the trangression classes induced by the Pfaffian, construct the Maslov spark, give a short proof of the Chern-Gauss-Bonnet theorem, and re-prove a result of Getzler.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2016.65.5762