Eigenvalue Estimates for the Bochner Laplacian and Harmonic Forms on Complete Manifolds

We study the set of eigenvalues of the Bochner Laplacian on a geodesic ball of an open manifold M, and find lower estimates for these eigenvalues when M satisfies a Sobolev inequality. We show that we can use these estimates to demonstrate that the set of harmonic forms of polynomial growth over M i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2010-01, Vol.59 (1), p.183-206
1. Verfasser: Charalambous, Nelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the set of eigenvalues of the Bochner Laplacian on a geodesic ball of an open manifold M, and find lower estimates for these eigenvalues when M satisfies a Sobolev inequality. We show that we can use these estimates to demonstrate that the set of harmonic forms of polynomial growth over M is finite dimensional, under sufficient curvature conditions. We also study in greater detail the dimension of the space of bounded harmonic forms on coverings of compact manifolds.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2010.59.3770