Eigenvalue Estimates for the Bochner Laplacian and Harmonic Forms on Complete Manifolds
We study the set of eigenvalues of the Bochner Laplacian on a geodesic ball of an open manifold M, and find lower estimates for these eigenvalues when M satisfies a Sobolev inequality. We show that we can use these estimates to demonstrate that the set of harmonic forms of polynomial growth over M i...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2010-01, Vol.59 (1), p.183-206 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the set of eigenvalues of the Bochner Laplacian on a geodesic ball of an open manifold M, and find lower estimates for these eigenvalues when M satisfies a Sobolev inequality. We show that we can use these estimates to demonstrate that the set of harmonic forms of polynomial growth over M is finite dimensional, under sufficient curvature conditions. We also study in greater detail the dimension of the space of bounded harmonic forms on coverings of compact manifolds. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2010.59.3770 |