Global Existence and Convergence Rates for the 3-D Compressible Navier-Stokes Equations without Heat Conductivity

We study the global existence and convergence rates of solutions to the three-dimensional compressible Navier-Stokes equations without heat conductivity, which is a hyperbolic-parabolic system. The pressure and velocity are dissipative because of the viscosity, whereas the entropy is non-dissipative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2008-01, Vol.57 (5), p.2299-2319
Hauptverfasser: Duan, Renjun, Ma, Hongfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the global existence and convergence rates of solutions to the three-dimensional compressible Navier-Stokes equations without heat conductivity, which is a hyperbolic-parabolic system. The pressure and velocity are dissipative because of the viscosity, whereas the entropy is non-dissipative due to the absence of heat conductivity. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant state is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure and velocity are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2008.57.3326