Coefficients of the One- and Two-gap Boxes in the Jones-Wenzl Idempotent

The first n – 1 projections forming the Jones tower of a II1 subfactor generate a semisimple quotient, JLn(δ), of the Temperley-Lieb Algebra. This algebra can be represented pictorially by planar diagrams on n strings in a box, and these diagrams can be classified according to the number of non-thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2007-01, Vol.56 (6), p.3129-3150
1. Verfasser: Reznikoff, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first n – 1 projections forming the Jones tower of a II1 subfactor generate a semisimple quotient, JLn(δ), of the Temperley-Lieb Algebra. This algebra can be represented pictorially by planar diagrams on n strings in a box, and these diagrams can be classified according to the number of non-through strings, or "gaps" they have. The Jones-Wenzl Idempotent is the complement in JLn(δ) of the supremum of the projections generating the Jones tower. We prove Ocneanu's formula for the coefficients of the one- and two-gap boxes in an explicit expression of this element.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2007.56.3140