Coefficients of the One- and Two-gap Boxes in the Jones-Wenzl Idempotent
The first n – 1 projections forming the Jones tower of a II1 subfactor generate a semisimple quotient, JLn(δ), of the Temperley-Lieb Algebra. This algebra can be represented pictorially by planar diagrams on n strings in a box, and these diagrams can be classified according to the number of non-thro...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2007-01, Vol.56 (6), p.3129-3150 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first n – 1 projections forming the Jones tower of a II1 subfactor generate a semisimple quotient, JLn(δ), of the Temperley-Lieb Algebra. This algebra can be represented pictorially by planar diagrams on n strings in a box, and these diagrams can be classified according to the number of non-through strings, or "gaps" they have. The Jones-Wenzl Idempotent is the complement in JLn(δ) of the supremum of the projections generating the Jones tower. We prove Ocneanu's formula for the coefficients of the one- and two-gap boxes in an explicit expression of this element. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2007.56.3140 |